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Abstract. In previous articles we derived a system of partial differential equations by 
means of which one may obtain expressions for the electromagnetic field in the interior 
and the exterior of a charging capacitor. In the present article a recursive process is 
described for finding solutions of this system in power-series form with respect to time. 
This allows one to find approximate solutions of Maxwell’s equations in a number of 
situations of physical interest.   
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1.  Introduction 
 
In previous articles [1,2] we described a mathematical process for finding expressions 
for the electromagnetic (e/m) field – i.e., solutions of Maxwell’s equations – in the 
interior and the exterior of a charging capacitor. These solutions generalize the 
“classical” results found in the educational literature of electrodynamics [3-9], which 
results were noted to not satisfy, in general, the Faraday-Henry law (Maxwell’s third 
equation).  
      Our method was based on a simple idea: we started with the known (incomplete) 
solutions and “corrected” them by adding unknown functions to be determined by 
using the Maxwell system. This led to a system of partial differential equations 
(PDEs) for these functions, in which system the (generally) time-dependent current 
that charges the capacitor appears as a sort of parametric function.  
      In the present article we suggest a mathematical process for obtaining solutions of 
the aforementioned system of PDEs in the form of power series with respect to time. 
This allows one to find approximate expressions for the e/m field in certain situations. 
For example, a slowly varying (thus almost time-independent) current allows for the 
“classical” solutions given in the literature, while a current that is almost linearly 
dependent on time (as may be assumed, in general, for any smoothly varying current 
in a very short time period) allows for new solutions that correct the standard 
expressions for the electric field while retaining the corresponding expressions for the 
magnetic field.  
      It should be noted that, regarding the solutions in the exterior of the capacitor, no 
retardation effects related to the finite speed of propagation of e/m interactions will 
concern us here. Indeed, as discussed in Sec. 4, our solutions are valid at points of 
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space not far from the capacitor, so that any change in the physical system will be felt 
“simultaneously” at all points of interest. 
 
 
 
 

2.   Solutions of Maxwell’s equations inside the capacitor 
 
We consider a parallel-plate capacitor with circular plates of radius a, thus of area 
A=πa2. The space in between the plates is assumed to be empty of matter. The 
capacitor is being charged by a time-dependent current I(t) flowing in the +z direction 
(see Fig. 1). The z-axis is perpendicular to the plates (the latter are therefore parallel 
to the xy-plane) and passes through their centers, as seen in the figure (by ˆzu  we 

denote the unit vector in the +z direction).  

I I

QQ

ˆzu

z

 
 

Figure 1 
 
      The capacitor is being charged at a rate dQ/dt=I(t), where +Q(t) is the charge on 
the right plate (as seen in the figure) at time t. If σ(t)=Q(t)/πa2=Q(t)/A is the surface 
charge density on the right plate, then the time derivative of σ is given by  
 

        
( ) ( )

( )
Q t I t

t
A A




               (1) 

 
      We assume that the plate separation is very small compared to the radius a, so that 
the e/m field inside the capacitor is practically independent of z, although it does 
depend on the normal distance ρ from the z-axis. In cylindrical coordinates (ρ, φ, z) the 
magnitude of the e/m field at any time t will thus only depend on ρ (due to the 
symmetry of the problem, this magnitude will not depend on the angle φ).  
      We assume that the positive and the negative plate of the capacitor of Fig. 1 are 
centered at z=0 and z=d, respectively, on the z-axis, where, as mentioned above, the 
plate separation d is much smaller than the radius a of the plates. The interior of the 
capacitor is then the region of space with  0  ρ < a  and  0 < z < d.  

      The magnetic field inside the capacitor is azimuthal, of the form ˆ( , )B B t u


. A 

standard practice in the literature is to assume that, at all t, the electric field in this 
region is uniform, of the form  
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( )
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t
E u
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
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                (2) 

 
while everywhere outside the capacitor the electric field vanishes. With this 
assumption the magnetic field inside the capacitor is found to be [4,5,8]  
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      Expressions (2) and (3) must, of course, satisfy the Maxwell system of equations 
in empty space, which system we write in the form [3,10]  
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By using cylindrical coordinates (see Appendix I) and by taking (1) into account, one 
may show that (2) and (3) satisfy three of Eqs. (4), namely, (a), (b) and (d). This is not 
the case with the Faraday-Henry law (4c), however, since by (2) and (3) we find that 

0E 
 

, while  
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 .  

 
An exception occurs if the current I is constant in time, i.e., if the capacitor is being 
charged at a constant rate, so that I΄(t)=0. This is actually the assumption silently or 
explicitly made in many textbooks (see, e.g., [4], Chap. 21). But, for a current I(t) 
with arbitrary time dependence, the pair of fields (2) and (3) does not satisfy the third 
Maxwell equation.  
      To remedy the situation and restore the validity of the full set of Maxwell’s 
equations in the interior of the capacitor, we must somehow correct the above 
expressions for the e/m field. To this end we employ the following Ansatz, taking into 
account Lemma 1 in Appendix II:  
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where f (ρ,t) and g(ρ,t) are functions to be determined consistently with the given 
current function I(t) and the given initial conditions. It can be checked that the 
solutions (5) automatically satisfy the first two Maxwell equations (4a) and (4b). By 
the Faraday-Henry law (4c) and the Ampère-Maxwell law (4d) we get the following 
system of PDEs:  
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Note in particular that the “classical” solution with f (ρ,t)0 and g(ρ,t)0 is possible 
only if I΄(t)=0, i.e., if the current I is constant in time, which means that the capacitor 
is being charged at a constant rate.  
      The quantity (1/ρ)(ρg)/ρ in the second equation, having its origin at the 

expression for B
 

 in cylindrical coordinates, must tend to a finite limit for ρ0 in 
order that the rot of the magnetic field be finite at the center of the capacitor. For this 
to be the case, (ρg)/ρ must only contain terms of at least first order in ρ. This, in 
turn, requires that g itself must be of at least first order (i.e., linear with no constant 
term) in ρ for all t, or else g must be identically zero. We must, therefore, require that  
 
        g (ρ,t)  0  for  ρ0              (7) 
 
for all t. Keeping this condition in mind, we can rewrite the system (6) in a more 
symmetric form:  
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      In principle, one needs to solve the system (8) for a given current I(t) and for 
given initial conditions. An alternative approach, leading to approximate solutions of 
various forms, is to expand all functions (i.e., f, g and I) in powers of time, t. We thus 
write:  
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Then, for example,  
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Obviously, In has dimensions of current  (time)–n, while fn and gn have dimensions of 
field intensity (electric and magnetic, respectively)  (time)–n.  
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      Substituting the series expansions (9) into the system (8), and equating 
coefficients of similar powers of t on both sides of the ensuing equations, we get a 
recursion relation in the form of a system of PDEs:  
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for n=0,1,2,... All non-vanishing functions gn(ρ) are required to satisfy the boundary 
condition (7); i.e., gn(ρ)0 for  ρ0.  
      An obvious solution of the system (10) is the trivial solution fn(ρ)0 and gn(ρ)0 
for all n=0,1,2,..., corresponding to f(ρ,t)0 and g(ρ,t)0. For this to be the case, we 
must have In+1=0 for all n=0,1,2,..., which means that I(t)=I0=constant (independent 
of t). This is the case typically treated in the literature, although the condition I=const. 
is usually not stated explicitly.  
      The simplest nontrivial solution of the problem is found by assuming that f and g 
are time-independent, i.e., are functions of ρ only. Then, by (9b) and (9c), f=f0(ρ) and 
g=g0(ρ), while fn(ρ)=0 and gn(ρ)=0 for n>0. The system (10) for n=0 gives  
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with solutions  
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respectively. The boundary condition g0(ρ)0 for  ρ0 cannot be satisfied for λ0; 
we are thus compelled to set λ=0. Given that f(ρ,t)=f0(ρ) and g(ρ,t)=g0(ρ), the solution 
of the system (8) is  
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      As is easy to check, by the first of Eqs. (10) it follows that In=0 for n>1. Therefore 
I(t) is linear in t, i.e., is of the form I(t)=I0+I1t. By assuming the initial condition 
I(0)=0, we have that I0=0 and  
 
        I(t) = I1 t                           (12) 
 
On the other hand, by integrating Eq. (1): σ΄(t)=I(t)/A, and by assuming that the 
capacitor is initially uncharged [σ(0)=0], we get:  
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      Finally, by Eqs. (5), (11), (12) and (13) the e/m field in the interior of the 
capacitor is  
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where we have set C=0 since, in view of the assumed initial conditions, there is no 
electric field inside the capacitor if I1=0. In order for the solution (14) to be valid, the 
current I(t) charging the capacitor must vary linearly with time, according to (12).  
 
 

3.   Solutions of Maxwell’s equations outside the capacitor 
 
We recall that the positive and the negative plate of the capacitor of Fig. 1 are 
centered at z=0 and z=d, respectively, on the z-axis, where the plate separation d is 
much smaller than the radius a of the plates. The space exterior to the capacitor 
consists of points with  ρ > 0  and  z(0,d ), as well as points with  ρ > a  and  0 < z < d. 
(In the former case we exclude points on the z-axis, with ρ=0, to ensure the finiteness 
of our solutions in that region.) We assume that the current I(t) is of “infinite” extent 
and hence the magnitude of the e/m field is practically z-independent.  
      The e/m field outside the capacitor is usually described mathematically by the 
equations [4,5,8]  
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As the case is with the standard solutions in the interior of the capacitor, the solutions 
(15) fail to satisfy the Faraday-Henry law (4c) (although they do satisfy the remaining 

three Maxwell equations), since 0E 
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 while  
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As before, an exception occurs if the current I is constant in time, i.e., if the capacitor 
is being charged at a constant rate, so that I΄(t)=0.  
      To find more general solutions that satisfy the entire set of the Maxwell equations, 
we work as in the previous section. Taking into account Lemma 2 in Appendix II, we 
assume the following general form of the e/m field everywhere outside the capacitor:  
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where f and g are functions to be determined consistently with the given current 
function I(t). The solutions (16) automatically satisfy the first two Maxwell equations 
(4a) and (4b). By Eqs. (4c) and (4d) we get the following system of PDEs:  
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Again, the usual solution with f (ρ,t)0 and g(ρ,t)0 is possible only if I΄(t)=0, i.e., if 
the capacitor is being charged at a constant rate. Note also that, since now ρ0, the 
boundary condition (7) for g no longer applies.  
      As we did in the previous section, we seek a series solution of the system (17) in 
powers of t. We thus expand f, g and I as in Eqs. (9), substitute the expansions into the 
system (17), and compare terms with equal powers of t. The result is a new recursive 
system of PDEs:  
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for n=0,1,2,... Again, an obvious solution is the trivial solution fn(ρ)0 and gn(ρ)0 for 
all n=0,1,2,..., corresponding to f(ρ,t)0 and g(ρ,t)0. This requires that In+1=0 for all 
n=0,1,2,..., so that I(t)=I0=constant (independent of t).  
      As in Sec. 2, we seek time-independent solutions for f and g, so that f=f0(ρ) and 
g=g0(ρ) while fn(ρ)=0 and gn(ρ)=0 for n>0. The system (18) for n=0 gives  
 

         0 1
0 0( ) and ( ) 0

2

I
f g


  


       

 
with solutions  
 

        0 1
0 ( ) ln( )

2

I
f


 


    and   0 ( )

2
g




  ,     

 
respectively (remember that ρ>0), where κ is a positive constant quantity having 
dimensions of inverse length, and where a factor of 2π has been put in g0(ρ) for future 
convenience. Given that f(ρ,t)=f0(ρ) and g(ρ,t)=g0(ρ), the solution of the system (17) 
is  
 

        0 1( , ) ln( ) , ( , )
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f t g t
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      By the first of Eqs. (18) it follows that In=0 for n>1. Therefore I(t) is linear in t, of 
the form I(t)=I0+I1t. By assuming the initial condition I(0)=0, we have that I0=0 and  
 



NAUSIVIOS CHORA, VOL. 8, 2022  

 

http://nausivios.hna.gr/ 

C-54 

        I(t) = I1 t                           (20) 
 
In view of the above results, the e/m field (16) in the exterior of the capacitor is  
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For this solution to be valid, the current I(t) must vary linearly with time.  
      By comparing Eqs. (14) and (21) we observe that the value of the electric field 
inside the capacitor does not match the value of this field outside for ρ=a, where a is 
the radius of the capacitor. This discontinuity of the electric field at the boundary of 
the space occupied by the capacitor is a typical characteristic of capacitor problems, in 
general. On the other hand, in order that the magnetic field in the strip 0 < z < d be 

continuous for ρ=a, the expression for B


 in (21) must match the corresponding 
expression in (14) upon substituting ρ=a and by taking into account that A=πa2. This 
requires that we set λ=0 in (21), so that this equation finally becomes  
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4.   Discussion 
 
As we have seen, expressions for the e/m field inside and outside a charging capacitor 
may be sought in the general form given by Eqs. (5) and (16), respectively. These 
expressions contain two unknown functions f(ρ,t) and g(ρ,t) which, in view of 
Maxwell’s equations, satisfy the systems of PDEs (8) and (17). These PDEs, in turn, 
admit series solutions in powers of t, of the form (9), where it is assumed that the 
current I(t) itself may be expanded in this fashion.  
      The coefficients of expansion of f and g may be determined, in principle, by 
means of the recursion relations (10) and (18), both of which are of the general form  
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This is not an easy system to integrate, so we are compelled to make certain ad hoc 
assumptions. Suppose, e.g., that we seek a solution such that fn(ρ)=0 and gn(ρ)=0 for 
n>k (k0). It then follows from the first of Eqs. (23) that In+1=0 for n>k or, 
equivalently, In=0 for n>k+1. Thus, if k=0, I(t) must be linear in t; if k=1, I(t) must be 
quadratic in t; etc.  
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      For a current varying sufficiently slowly with time, we may approximately assume 
that In=0 for n>0, so that I(t)=I0=const. This allows for the possibility that f and g 
vanish identically, as is effectively assumed (though not always stated explicitly) in 
the literature. On the other hand, any smoothly varying I(t) may be assumed to vary 
linearly with time for a very short time period. Then, a solution of the form (14) and 
(22) is admissible.  
      There are several aspects of the solutions described by Eqs. (14) and (22) that may 
look unphysical: (a) the electric field in (22) apparently diverges for ρ; (b) the 
magnetic field in both (14) and (22) diverges for t; (c) although, by assumption, 
there are no charges at the interface between the interior and the exterior of the 
capacitor (i.e., on the cylindrical surface defined by 0< z < d and ρ=a) the electric field 
is non-continuous on that surface, contrary to the general boundary conditions 
required by Maxwell’s equations; (d) the constant κ in (22) appears to be arbitrary. 
We may thus use the above solutions only as approximate ones for values of ρ not 
much larger than the radius a of the plates, as well as for short time intervals. (Note 
that ρ has to be much smaller than the length of the wire that charges the capacitor if 
this wire is to be considered of “infinite” length, hence if the external e/m field is to 
be regarded as z-independent.) We may smoothen the discontinuity problem of the 
electric field for ρ=a by assuming that this field is continuous at t=0, i.e., at the 
moment when the charging of the capacitor begins. By setting ρ=a in (14) and (22) 
and by equating the corresponding expressions for E


 we may then determine the 

value of the constant κ in (22). The result is:  κ=e1/2/a.  
      For an enlightening discussion of the subtleties concerning the e/m field produced 
by an infinitely long straight current, the reader is referred to Example 7.9 of [3].  
 

 
 
 
 

Appendix I. Vector operators in cylindrical coordinates 
 
 

 

Let A


 be a vector field, expressed in cylindrical coordinates (ρ, φ, z) as  
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The div and the rot of this field in this system of coordinates are written, respectively, 
as follows:  
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A u u A u

z z
  

  
     

         
                     


 . 
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In particular, if the vector field is of the form  
 

        ˆ ˆ( ) ( )z zA A u A u   


 ,    

 

then  0A 


.   
 
 
 
 

Appendix II. General form of the electric field 
 

 
To justify the general expression for the electric field implied in the Ansatz (5) used to 
find solutions of Maxwell’s equations inside the capacitor, we need to prove the 
following:  
 
      Lemma 1. If the magnetic field inside the capacitor is azimuthal, of the form  
 

        ˆ( , )B B t u


                        (A.1) 

 
then the electric field (also assumed dependent on ρ and t) is of the form  
 
        ˆ( , ) zE E t u


                        (A.2) 

 
      Proof. Let  
 

        ˆ ˆ ˆ( , ) ( , ) ( , )z zE E t u E t u E t u       


                  (A.3)    

 
Then (cf. Appendix I) from Gauss’ law (4a) it follows that  
 

        
( )

( ) 0
t

E E 


 


  


                      (A.4) 

 
In order for the electric field to be finite at the center of the capacitor (i.e., for ρ=0) 
we must set α(t)0, so that Eρ(ρ,t)=0. On the other hand, the z-component of 
Faraday’s law (4c) yields  
 

        
( )

( ) 0
t

E E 


 


  


                     (A.5) 

 
Again, finiteness of the electric field for ρ=0 dictates that β(t)0, so that Eφ(ρ,t)=0. 
Eventually, only the z-component of the electric field is non-vanishing, in accordance 
with (A.2).  
 
      The solutions outside the capacitor are subject to the restriction ρ>0. The 
expression for the electric field implied in the Ansatz (16) is based on the following 
observation:  
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      Lemma 2. If the magnetic field outside the capacitor is azimuthal, of the form 
(A.1), then the electric field (also assumed dependent on ρ and t) is again of the form 
(A.2).  
 
      Proof. Let the electric field be of the form (A.3). Then from Gauss’ law (4a) and 
from the z-component of Faraday’s law (4c) we get (A.4) and (A.5), respectively. On 
the other hand, from the ρ- and φ-components of the fourth Maxwell equation (4d) we 
find that Eρ/t=0 and Eφ/t=0, which means that α and β are actually constants. 
Thus the general form of the electric field outside the capacitor should be  
 

        ˆ ˆ ˆ( , ) zE u u f t u 
  
 

  


 .     

 
Obviously, the function f (ρ,t) is related to the time-change of the magnetic field and is 
expected to vanish if the current I that charges the capacitor is constant. If the electric 
field itself is to vanish when I=constant, both constants α and β must be zero. 
Eventually, the electric field outside the capacitor must be of the general form (A.2).  
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