MULTICRITERIA OPTIMIZATION

Best Simultaneous Approximation of Functions

Alex Bacopoulos^a and Dimitra Kouloumpou^b

^aDepartment of Applied Mathematics and Physical Sciences, National Technical University of Athens, Zografou Campus, 157 80, Athens, Greece, (abacop@central.ntua.gr)

^b Section of Mathematics, Mathematical Modeling and Applications Laboratory, Hellenic NavalAcademy, Piraeus 18539, Greece, (<u>dimkouloumpou@hna.gr</u>)

Abstract. The problem we consider is to find (the) **best approximation**(s) to a given function **simultaneously** with respect to more than one criterion of proximity. Questions of existence, characterization, unicity and computation are examined. Examples are given.

Keywords: Best vectorial approximation(s), minimal projection norms, computational schemata

1. INTRODUCTION

Among other formulations of simultaneous approximation, the notion of a "Vectorially Minimal Approximation" is introduced, which is shown to be the **natural setting** for problems of simultaneity, both theoretically as well as computationally. For the above formulations of Multicriteria Optimization we propose 3 types of "models" and show their interrelationships in each "primal" and "dual" spaces. In particular, attention has been given to effective models suitable for **numerical computation.** A related problem situated in the "dual space" of approximation operators is to approximate the (non-linear) **best approximation** of functions (in situations to be specified), is motivated by the following inequality, where the role of minimal projections, i.e. min||P|| is self-explanatory.

 $||f - Pf|| \le ||I - P||dist(f, Y) \le (1 + ||P||)dist(f, Y).$

Here again the approximation in the operator space is done **simultaneously** with respect to several norms. As just indicated, this reduces to finding "simultaneously" **minimal projection norms**. Examples are given and a "Zero in the Convex Hull" as well as a "Kolmogorov-type" characterization theorems are presented.

The tools used in this presentation are Elementary Optimization Theory, Computational Numerical Analysis and Elementary Functional Analysis.

2. VECTORIAL APPROXIMATION

Let $\|\cdot\|_a$, $\|\cdot\|_b$ be two norms defined on a linear space S and let $f \in S \sim K$ be a given function to be approximated by approximation $p \in K \subset S$. K is assumed to be a closed, convex, proper subset of S. Let $G(p) = (||f - p||_a, ||f - p||_b)$ and define the partial ordering \geq on G(K) by

$$G(p) \trianglelefteq G(q) \Leftrightarrow \begin{cases} \|f - p\|_a \le \|f - q\|_a \\ and \\ \|f - p\|_b \le \|f - q\|_b \end{cases}$$

We shall write $G(p) \lhd G(q)$ if and only if $G(p) \trianglelefteq G(q)$ and $G(p) \ne G(q)$.

Definition 2.1

We say that p is a best vec approximation if there does not exist a $q \in K$ such that $G(q) \triangleleft G(p)$.

Definition 2.2

The minimal set *M* is given by $M = \{G(p): p \in K \text{ is a best vec approximation }\}.$

There are some general geometric facts that are easy to verify. We cite some of them here:

- $\pi_1(G(K))$ has zero homotopy group.
- *M* is a convex, decreasing arc.

Let Λ is the 45° bisector of the $\|\cdot\|_{a_{\ell}} \|\cdot\|_{b}$ orthogonal axes. L is the supporting line to G(K) which makes 135° angle with $\|\cdot\|_{a}$ axes.

The proof of the following theorem is a consequence of the definitions, convexity and, in the case of $(P_m) = M \cup L$, the continuity of the best approximation operator. Sum here denotes the sum of two norms. Max means the maximum of two norms.

Theorem 2.1

Let p_s be a best *sum* approximation. Then $G(P_s) \subseteq M \cup L$. Similarly, if p_m denotes the best *max* approximation then $G(P_m) = M \cup L$ (assuming $M \cup L \neq \emptyset$).

Furthermore, we define the set *D* by

$$D = \left\{ d: \inf_{q \in K} \|f - q\|_a \le d \le \inf_{q \in B} \|f - q\|_a \right\}$$

where,

$$B = \left\{ r \in K : \|f - r\|_b = \inf_{q \in K} \|f - q\|_b \right\}.$$

Theorem 2.2

An element $p \in K$ is a best vectorial approximation if and only if there exists $d \in D$ and $\Phi \in S^*$ satisfying

$$\begin{split} \|\Phi\|_b &= 1\\ \Phi(f-b) = \|f-q\|_a \leq d \end{split}$$

and

 $Re\Phi(p-q) \le 0$ for all $q \in K$ satisfying $||f-q||_a \le d$.

3. VECTORIALY MINIMAL PROJECTIONS

Let $\Lambda = \Lambda(X, V)$ be the space of all linear operators from a real or complex space X into a finite-dimensional subspace V, and let Π be the family of all operators in Λ with a given fixed action on V (e.g., the identity action corresponds to the family of projections onto V). Let X be equipped with norms $\|\cdot\|_i$, i = 1, 2, ..., k. Let X_i denote the normed space given by X with the norm $\|\cdot\|_i$, and define

 $||x|| := (||x||_1, ||x||_2, ..., ||x||_k).$

Define the partial ordering " \trianglelefteq " on *X* by

 $||x|| \leq ||z|| \Leftrightarrow ||x||_i \leq ||z||_i \text{ for every } i = 1, 2, ..., k.$ We write ||x|| < ||z|| if and only if $||x|| \leq ||z||$ and $||x|| \neq ||z||$.

Definition 3.1

For $Q \in \Lambda$, let $||Q||_i$ denote the operator norm on X_i , let $||Q|| := (||Q||_1, ||Q||_2, ..., ||Q||_k)$ and define the partial ordering " \trianglelefteq " on Λ by $||P|| \trianglelefteq ||Q|| \Leftrightarrow ||P||_i \le ||Q||_i$ for every i = 1, 2, ..., k. We write $||P|| \lhd ||Q||$ if and only if $||P|| \trianglelefteq ||Q||$ and $||P|| \ne ||Q||$. *P* is a vectorially minimal operator in Π if there no exist $Q \in \Pi$ such that $||Q|| \lhd ||P||$.

Notation

The minimal set *M* is given by

 $M \coloneqq \{ \|P\| \colon P \in \Pi \text{ is a vectorially minimal operator in } \Pi \}.$

Definition 3.2

For i = 1, 2, ..., k $(x, y) \in S(X_i^{**}) \times S(X_i^{*})$ will be called an extremal pair for $Q \in \Lambda$, if $\langle Q_i^{**}x, y \rangle = ||Q||_i$, where $Q_i^{**}: X_i^{**} \to V$ is the second adjoint extension of Q to X_i^{**} .

(S denotes the unit sphere).

Notation

Let E(Q) be the set of all extremal pairs for Q. To each $(x, y) \in Q$ associate the rankone operator $y \otimes x$ from X_i to X_i^{**} given by $(y \otimes x)(z) = \langle z, y \rangle x$ for $\in X_i$, where *i* is the subscript associated with (x, y).

Theorem 3.1 (Characterization)

P has vectorially minimal norm in Π if and only if the closed convex hull of $\{y \otimes x\}_{(x,y) \in E(P)}$ contains an operator E_P for which *V* is an invariant subspace, i.e.

$$\boldsymbol{E}_{\boldsymbol{P}} = \int_{\boldsymbol{E}(\boldsymbol{P})} \boldsymbol{y} \otimes \boldsymbol{x} d\boldsymbol{\mu}(\boldsymbol{x}, \boldsymbol{y}) : \boldsymbol{V} \longrightarrow \boldsymbol{V}.$$

Theorem 3.2

P has vectorially minimal norm in Π if and only if there does not exist $D \in \Delta = \{D \in \Lambda : D = 0 \text{ in } V\}$ such that

$$\sup_{(x,y)\in E(P)} Re\langle P_i^{**}x,y\rangle \overline{\langle D^{**}x,y\rangle} < 0.$$

4. SOME SPECIAL CASES

We give some examples of **Theorem 2.2**. In the notation of this theorem, let S = C[a, b],

 $K = \prod_n [a, b]$ (the set of polynomials on [a, b] of degree less than or equal to n), $\|\cdot\|$ is the supremum norm on [a, b] and $w_1, w_2 \in C[a, b]$ two (weight) functions, positive and continuous on [a, b].

We introduce extreme points, for a given $f \in C[a, b]$ to be approximated, in connection with the next theorem, as follows:

$$\overline{X}_{+1} = \{x \in [a, b]: w_1(x)(f(x) - p(x)) = + ||w_1(f - p)||\}$$

$$\overline{X}_{+2} = \{x \in [a, b]: w_2(x)(f(x) - p(x)) = + ||w_2(f - p)||\}$$

$$\overline{X}_{-1} = \{x \in [a, b]: w_1(x)(f(x) - p(x)) = - ||w_1(f - p)||\}$$

$$\overline{X}_{-2} = \{x \in [a, b]: w_2(x)(f(x) - p(x)) = - ||w_2(f - p)||\}.$$

$$\overline{\underline{X}}_{p} = \overline{\underline{X}}_{+1} \cup \overline{\underline{X}}_{+2} \cup \overline{\underline{X}}_{-1} \cup \overline{\underline{X}}_{-2}$$

The sign function $\sigma(x)$ on \overline{X}_p is defined by

$$\sigma(x) = -1 \text{ when } x \in \overline{X}_{-1} \cup \overline{X}_{-2}$$

and

$$\sigma(x) = +1 \text{ when } x \in \overline{X}_{+1} \cup \overline{X}_{+2}.$$

Theorem 4.1 (Application)

Consider the Vectorial Chebyshev optimization, with w_1 and w_2 as defined above. Then p is a best vec approximation to f if and only if there exist n + 2 points $x_1 < x_2 < \cdots < x_{n+2} \in \overline{X}_p \subset [a, b]$ satisfying

$$\sigma(x_i) = (-1)^{i+1} \sigma(x_1)$$
 for every $i = 1, 2, ..., n+2$.

Theorem 4.2

Each best vec approximation is unique; i.e. given $\mu \in M$ there is only one $p \in \Pi_n[a, b]$ such that $G(p) = \mu$.

http://nausivios.hna.gr/

Note that this uniqueness does not contradict the fact that the minimal set M has, in general, an infinite number of points, each of which corresponds to a (unique) best vectorial approximation. Likewise, the easily shown existence of M proves the existence of best solutions.

Theorem 4.3 (Application)

Let $X = C[a, b], K = \prod_n [a, b], \|\cdot\|_a, \|\cdot\|_b$ the *sup* and L_2 norms on C[a, b] which we denote by $\|\cdot\|_{\infty}$ and $\|\cdot\|_2$ respectively.

Find the best vectorial approximation p_d whose error in Chebyshev norm equals a prescribed value $d \in P^+$, $|| f - p_1 ||_{\infty} \le d \le || f - p_2 ||_{\infty}$. It is clear that the desired polynomial p_d is the unique solution to the problem

$$\min_{p\in\Pi_n} \|f-p\|_2$$

subject to

$$\|f-p\|_{\infty} \le d.$$

Since the number of constraints here is infinite, we proceed by solving a sequence of quadratic programming problems, each with a finite number of constraints. The sequence of solutions $\{p_k\}$ is shown to converge to the theoretical solution p_d .

Algorithm Corresponding to Theorem 4.3

At the k - th step we have from the preceding steps a finite set of points $X^k \subset [a, b]$. We solve the quadratic program

$$\min_{p\in\Pi_n} \|f-p\|_2$$

subject to

$$\|f(x) - p(x)\|_{\infty} \le d, x \in X_k.$$

Denoting by p_k the solution of this problem, we calculate a point $x_k \in [a, b]$ such that $|f(x_k) - p_k(x_k)| = ||f - p_k||_{\infty}$.

We form $X^{k+1} = X^k \cap \{x_k\}$ and proceed to the next cycle. At the beginning X^1 may be an arbitrary finite set, containing a maximum of $|f(x) - p_L(x)|$.

REFERENCES

- 1. S.M. Lozinski, On a class of linear operators, Dokl. Akad. Nauk SSSR 64, 1948, pp. 193-196.
- 1. E.W. Cheney, C.R. Hobby, P.D. Morris, F. Schurer and D.E. Wulbert, On the minimal property of the Fourier projection, Trans. Am. Math. Soc. 143, 1969, pp. 249-258.
- 2. E.W. Cheney and K.H Price, Minimal projections, in Approximation Theory, Proceedings of Symposium, Lancaster 1969, New York 1971, pp. 261-289.
- 3. W. Odyniec and G. Lewicki, Minimal projections in Banach spaces, Springer-Verlag Lecture Notes in Mathematics, 1449.
- 5. D.H Hyers, G. Isac and Th.M. Rassias, Topics in nonlinear analysis and applications, World Scientific, 1997.
- 6. B. Brosowski and A.Da Silva, Scalarization of vectorial relations applied to certain optimization problems, Note Mat. 11,1991, pp. 69-91.
- 7. B.L. Chalmers and F.T. Metcalf, A characterization and equations for minimal projections and extensions, J. Operator Theory 32, 1994, pp. 31-46.
- 8. B.L. Chalmers and F.T. Metcalf, minimal projections and extensions for compact Abelian groups, in sl Approximation Theory VI, C.K. Chui et al., eds., Academic Press, 1989, pp. 129-132.
- 9. A. Bacopoulos and B.L. Chalmers, Vectorially minimal projections, in Approximation Theory *III* Vol. 1: Approximation and Interpolation, World Scientific, C.K. Chui end L.L. Schumaker, eds. 1995, pp. 15-22.
- 10. A. Bacopoulos and C.A Botsaris, An efficient blend of the first Remes algorithm with quadratic programming, J. Math. Anal. Appls. 174, No. 2 ,1993, pp. 342-358.
- 11. A. Bacopoulos, Computational n-D Optimization, BOOK in progress. Suggested to A. Bacopoulos by Richard Bellman (available R.B.'s letter)