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Abstract. This paper presents a complete review of the standard transmission-line model 
(STL) for two-wire transmission lines exposed to external electromagnetic fields. The 
validity of the STL model is limited to frequency ranges where the transverse 
characteristic dimension of the line is electrically short. This model is derived from 
Maxwell’s equations in terms of voltage and current at the ends of the line. We examine 
terminated transmission lines, which are excited by nonuniform fields. Numerical results 
for the induced load voltages show notable deviations from those obtained under the 
assumption of plane-wave incidence. 
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INTRODUCTION 

The electromagnetic (EM) field coupling to transmission lines has a great practical interest for 
many electromagnetic compatibility (EMC) studies and applications (e.g. plethora of the cables 
associated with most of the audio/video interfaces and host bus adapters). 

The analysis of the EM field coupling to transmission lines can be performed exactly via 
Maxwell’s equations. These equations are transformed into integral equations, which may be 
solved numerically by applying standard numerical techniques (like the well-known moment 
methods [1]). However, a systematic use of such methods becomes cumbersome due to large 
storage and computer time requirements. 

For sufficiently low frequencies, the problem can be solved using the transmission-line 
approximation or standard transmission-line model (STL) [2]. The main assumptions for this 
approach are as follows: 

        
a. Propagation occurs along the line axis. If the cross-sectional dimensions of the line 

conductors are electrically small, propagation can indeed be assumed to occur essentially 
along the line axis only. 

b. The sum of the line currents at any cross section of the line is zero. We are concerned with 
transmission-line mode currents and neglecting the so-called “antenna mode” ones. This is 
a good approximation if we wish to compute the load response of the line, because the 
antenna-mode current is small near the end of line. 

c. The response of the line to the coupled EM fields is quasi-transverse electromagnetic 
(TEM). The condition that the response of the line is quasi-TEM is satisfied only up to the 
cutoff frequency, above which higher-order modes begin to appear [2]. In some cases, e.g. 
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finite parallel plates or coaxial lines, it is possible to derive an exact expression for the cutoff 
frequency, below which only TEM mode exists [3]. 

 
For higher frequencies, where the STL model is not valid, many authors have proposed the 

extension of the STL theory to such frequency ranges through models that retain the simplicity 
of the STL model [4-6]. In this way, it is possible to overcome serious problems associated with 
full-wave numerical simulations (computational cost). In this paper, we apply the assumptions of 
the STL model in a two-wire transmission line. We will first derive the field-to-transmission line 
coupling equations following the analysis of [2, 7, 8]. 

DERIVATION OF THE GENERALIZED TELEGRAPHER’S EQUATIO NS 

We consider the case of a uniform two-wire transmission line, terminated in linear loads 1Z  

and 2Z . The transmission line is defined by the geometrical parameters shown in Figure 1 
(namely the wire radius α , the distance between the conductors b  and the length s ). The line 
is immersed in a lossy dielectric medium and is illuminated by an external EM field with 
intensities incE

r
 and incH

r
. 

 
 
 

 
FIGURE 1. Geometry of a two-wire transmission line in an incident EM field. 

 
The problem of interest is the calculation of the induced voltages at the terminations. The 

total fields E
r

 and H
r

 may be decomposed into two different components, the incident fields 
( incE
r

 and incH
r

), which exist in the absence of the transmission line, and the scattered fields 

( scaE
r

 and scaH
r

), which are generated by the currents and charges flowing on the conductors. 
To develop equations for the induced line currents in terms of the incident fields incE

r
 and incH

r
, 

Stokes’ theorem is used. The theorem states that any vector field F
r

 satisfies  
 

 ∫∫∫ ⋅×∇=⋅
SC

SdFldF
rrrrr

 (1) 
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where C is a closed contour enclosing an area S, as shown in Figure 1. Letting F
r

 represent the 

electric field E
r

 and applying this expression to the pertinent Maxwell’s equation for the time-
harmonic variation of the form tje ω , one obtains 

 

 HjE
rrr

0ωµ−=×∇  (2) 

 
or  

 

 ∫∫∫ ⋅−=⋅
S

0
C

SdHjldE
rrrr

ωµ  (3) 

 
Since the contour has a differential width z∆ , (3) can be written as 

 

 
( ) ( )[ ] ( ) ( )[ ]

( )dxdzzxHj

dzzEzbEdxzxEzzxE

b zz

z
y

zz

z
zz

b

xx

,0,

,0,0,0,,0,,0,

0
0

0

∫ ∫

∫∫
∆+

∆+

−=

−−−∆+

ωµ
 (4) 

 
The field quantities in (4) are the total fields. Since λ<<b , the total line-to-line voltage can be 
defined in the quasi-static sense as 

  

 ( ) ( )dxzxEzV
b

x ,0,
0∫−=  (5) 

 
On the perfectly conducting wires, the total tangential electric fields ( )zbEz ,0,  and ( )zEz ,0,0  
must be zero. Dividing (4) by z∆  and taking the limit as z∆  approaches zero gives the following 
differential equation 

 

 
( ) ( ) ( ) ( )dxzxHjdxzxHjdxzxHj

dz

zdV b

y

b

y

b

y ,0,,0,,0,
0

sca
0

0

inc
0

0
0 ∫∫∫ +== ωµωµωµ  (6) 

 
where we have decomposed the total magnetic field in incident and scattering components. The 
last integral in (6) represents the magnetic flux produced by the current ( )zI  flowing in each 
conductor. According to the assumptions (a) and (b) of the STL model, the magnetic flux density 
produced by this current can be calculated using Biot-Savart’s law and the result is 

 

 ( ) ( ) ( )zILdxzxHz
b

y ′=−=Φ ∫ ,0,
0

sca
0µ  (7) 

 
 
 
 
The proportionality constant between ( )zΦ  and ( )zI  is the per-unit-length inductance L′  [9] of 
the transmission line. Inserting the inductance term into (6), we obtain the first generalized 
telegraph’s equation 

 

 
( ) ( ) ( )dxzxHjzILj

dz

zdV b

y ,0,
0

inc
0 ∫=′+ ωµω  (8) 

 
To derive the second telegraph’s equation, we assume that the medium surrounding the line 

has permittivity constant 0εεε r= . We start from Maxwell’s equation 
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 JEjH

rrrr
+=×∇ ωε  (9) 

 

For a closed surface S, Stokes’ theorem applied to a vector function F
r

 gives 
 

 0
S

=⋅×∇∫∫ SdF
rrr

 (10) 

 

Letting F
r

 represent the H
r

 field of (9) with the closed surface surrounding one of the 
conductors as shown in Figure 2, we obtain 

 

 ( ) ( ) 0
1S

=+−∆+ ∫∫ dzrdEjzIzzI r φωε  (11) 

 
 
 
where rE  is the total radial electric field in the vicinity of the wire surrounded by the partial 
cylindrical surface S1, as shown in Figure 2. The total field can be decomposed into incident and 
scattered components. Upon dividing by z∆  and taking the limits as ar →  and 0→∆z , (11)  it 
becomes 

 

 
( )

0
2

0

inc
2

0

sca =++ ∫∫
ππ

φωεφωε adEjadEj
dz

zdI
rr  (12) 

 
 

 
 

FIGURE 2. Closed  surface  surrounding  one  conductor. 
 
 
According to the assumption (a) of the STL model, the electric filed in the vicinity of the line 
wires can be assumed to be independent of the angle φ  around  the wire. Consequently, the 
first integral in (12) becomes 
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 ( )zqjadEj r ′=∫ ωφωε
π2

0

sca  (13) 

 
where ( )zq′  is the linear charge density along conductor. The second integral in (12) involving 
the incident field is zero because there are no free charges in the vicinity of the wire. Thus, the 
second telegrapher’s equation becomes 

  

 
( ) ( ) 0=′+ zqj

dz

zdI
ω  (14) 

 
We can express this equation in terms of a voltage by introducing a per-unit length capacitance 
C ′  [9], which relates the line charge to the scattered component of the line voltage as 

 
 ( ) ( )zVCzq sca′=′  (15) 

 
The total line-to-line voltage is given as 

 

 ( ) ( ) ( ) ( ) ( )∫ +−=+=
b

x zVdxzxEzVzVzV
0

scaincscainc ,0,  (16) 

 
Then, (14), (15) and (16) can be combined to give the second telegrapher’s equation 

 

 
( ) ( ) ( )∫′−=′+

b

x dxzxECjzVCj
dz

zdI
0

inc ,0,ωω  (17) 

 
To obtain a unique solution for the equations (8) and (17), it is necessary to include 

appropriate boundary conditions relating ( )zV  and ( )zI  at the ends of the line. For a finite line of 

length s , which is terminated in load impedances 1Z  and 2Z  as shown in Figure 3, the 
following relationships must be included for a unique solution 

 
 ( ) ( )00 1IZV −= , ( ) ( )sIsV 2Z=  (18) 

 

 
FIGURE 2. Terminated two-wire transmission line. 

 
 

z

x ( )00 ,0, zx

s

b

excitation source

1Z 2Z1V 2V

1r 2r

− −

++
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Note that the negative sign in the first end condition (18) arises from the definition of positive 
current flow. The coupled equations (8) and (17) can be solved analytically using a chain matrix 
approach. The result is [7, 8] 

 

 
( ) ( ) ( )[ ]

( ) ( ) ( )


+−+



 −−−−=

∫∫

∫
b

xc

b

xc

s

c

dxxEsZsZdxsxEZ

dzszZszZzK
D

Z
V

0

 inc
2

0

inc

0
2

1
1

0,0,sinhcosh,0,

sinhcosh

γγ

γγ
 (19) 

 

 
( )( )

( ) ( ) ( )


++−



 +=

∫∫

∫
b

xc

b

xc

s

c

dxxEZdxsxEsZsZ

dzzZzZzK
D

Z
V

0

inc

0

 inc
1

0
1

2
2

0,0,,0,sinhcosh

sinhcosh

γγ

γγ
 (20) 

 
where ( ) ( ) ( )zEzbEzK zz ,0,0,0, incinc −= , ( ) ( ) sZZZsZZZD cc γγ sinhcosh 2

2121 +++=  and γ  is the 
complex propagation constant of the transmission line. In cases of a lossless transmission line 
in free space, the propagation constant is jk=γ , where λπ2=k . With cZ  we denote the 
characteristic impedance of the transmission line. For the lossless case, this is given by 

CLZ c ′′= . 

TRANSMISSION LINE EXCITATION BY NONUNIFORM FIELDS  

In evaluating the response of transmission lines to external fields, it is customary to assume 
that the incident field is a plane wave. The plane wave can approximate the local behavior of 
actual fields in the far-field region of realizable emitters. However, this approximation is valid 
only when studying interactions with objects or devices that are electrically small within the 
frequency range of the incidents fields. Under high-frequency excitation, it is highly likely that 
operating transmission lines are electrically long within the frequency range of the interfering 
fields often encountered in practice. On the other hand, only a few studies that take into account 
no uniformities in the excitation fields can be found in the open literature [7, 8, 10].  

Two different nonuniform excitation fields are examined in this work. The field generated by 
an elementary electric dipole parallel to the line conductors and the field produced by an 
idealized spherical-wave source. The location of the dipole is taken to be at ( )00 ,0, zx  and the 
far-field components of the excitation field involved in (19) and (20) are given by [11] 

 

 ( ) ( )( )

( ) ( )

( ) ( )20
2

0

3
2

0
2

0

00inc ,0, zzxxjk
x e

zzxx

zzxx
AzxE −+−−





 −+−

−−
=  (21) 

 

 ( ) ( )

( ) ( )

( ) ( )20
2

0

3
2

0
2

0

2
0inc ,0, zzxxjk

z e

zzxx

xx
AzxE −+−−





 −+−

−
−=  (22) 

 
where A  is a constant analogous to the dipole moment. The corresponding expressions for a 
linearly polarized spherical wave generated by a point source at ( )00 ,0, zx  are 

 

 ( )
( ) ( )

( ) ( )20
2

0

2
0

2
0

0 inc ,0, zzxxjk
x e

zzxx

zz
BzxE −+−−

−+−

−
=  (23) 
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 ( )
( ) ( )

( ) ( )20
2

0

2
0

2
0

0inc ,0, zzxxjk
z e

zzxx

xx
BzxE −+−−

−+−

−
−=  (24) 

 
where B  is a constant determining the strength of the spherical wave. Note especially that any 
choice of dipole or source position ( )000 ,, zyx  with 00 ≠y  yields weaker excitation fields; 

therefore, only worst-case scenarios with 00 =y  are of interest herein. 
A plane-wave excitation field is also considered, which may be expressed as 
 

 ( ) ( )00 cossin
00

inc cos,0, θθθ zxjk
x eEzxE +−−=  (25) 

 
 ( ) ( )00 cossin

00
 inc sin,0, θθθ zxjk

z eEzxE +−−=  (26) 
 

where 0θ  is the angle between the z  axis and the propagation vector ( )00 cossin θθ zxkk
))r

+−= . 

The overall factor 0E  denotes the complex amplitude of the plane wave. 
For the purpose of direct comparison, all three excitation fields considered in this paper are 

properly normalized (see [12]) so as to be unitary at the center of the lower conductor ( )2,0,0 s . 
In any of the three excitation cases, the integrals in (19) and (20) can be evaluated numerically 
via standard quadrature routines. Approximate closed-form expressions can be obtained for the 
second and third integrals in (19) and (20) [12]. 

RESULTS AND CONCLUSIONS 

In this section, we present numerical results for the real and imaginary parts of the induced 
load voltages 1V  and 2V . We assume that the excitation source (dipole or spherical-wave 

source) is located at ( ) ( )2,0,,0, 00 sddzx += , where d  is a distance parameter. The results are 

for a lossless transmission line with 201=λb  and 3100=λs . The line is terminated in 

matched loads; that is cΖΖΖ == 21 . The position of the source varies with the parameter d , but 
the angle between the lower conductor axis and the displacement vector from its center 
( )2,0,0 s  to the source remains unaltered and equal to 45 degrees. The real and imaginary parts 

of the load voltages 1V  and 2V  for the excitation field of (21) and (22) are shown in Figures 4 

and 5, respectively, as functions of λd . The horizontal axis in these graphs is in logarithmic 

scale. As can be seen from Figures 4 and 5, the load responses exhibit rapid variations as λd  

increases from 10 to 100. For larger values of λd , the load voltages begin to stabilize slowly 
and reach their “final” values, which are virtually identical to those occurring for the excitation 
field of (25) and (26) with 4/30 πθ = . A similar behavior is observed for the excitation field of 
(23) and (24) [12]. The relevant plots are not shown here. 

Numerous checks have revealed that the oscillating behavior discussed above is 
representative of what should be expected for typical nonuniform excitation fields and not very 
short transmission lines. For a fixed position of the excitation source, the spatial frequency of 
these oscillations decays as s  decreases with b  unaltered. The oscillations finally disappear, 
but the load voltages may still deviate significantly from those predicted under the assumption of 
plane-wave incidence. As an example, results for a line with 310=λs  are depicted in Figure 6. 

All other parameters are the same as above. For brevity, only the left-end load voltage 1V  is 

shown. As can be seen, both the real and imaginary parts of 1V  still exhibit an evident 

dependence on λd . 
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FIGURE 4. Plot of the load voltage 1V  as function of λd  for the field generated by an elementary dipole 

and a transmission line with 201=λb  and 3100=λs . 

 

 
FIGURE 5. Plot of the load voltage 2V  as function of λd  for the field generated by an elementary dipole 

and a transmission line with 201=λb  and 3100=λs . 
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FIGURE 6. Plot of the load voltage 1V  as function of λd  for the field generated by an elementary dipole 

and a transmission line with 201=λb  and 310=λs . 

 
Numerical results presented here manifest that the load response of a two-wire transmission 

line excited by a nonuniform EM field may differ significantly from that excited by a plane wave 
arriving from the same direction. The discrepancies become more pronounced for electrically 
longer lines, a fact that is particularly important in view of the increasing use of microwave 
frequencies in numerous contemporary applications. 

 

ACKNOWLEDGMENT  

The authors would like to thank Lt. Commander of  Hellenic  Navy  D. Filinis  for his help and 
encouragement during the preparation of this paper. 

 

REFERENCES 

1. R. F. Harrington, Field Computation by Moments Methods, IEEE Press, 1993. 

2. F. M. Tesche, M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, 

Wiley, 1997. 

3. C. R. Paul, Analysis of Multiconductor Transmission Lines, Wiley, 1994. 

4. S. Tkatchenko, F. Rachidi, and M. Ianoz, ”Electromagnetic filed coupling to a line of finite length: 

Theory and fast iterative solution in frenquency and time domains,” IEEE Trans. Electromagn. 

Compat., 37, 509-518 (1995). 

5. S. Tkatchenko, F. Rachidi, and M. Ianoz, ”High-frequency electromagnetic field coupling to long 

terminated wires,” IEEE Trans. Electromagn. Compat., 43, 117-129 (2001). 

-8

-6

-4

-2

0

2

4

6

8

1,00E+01 1,00E+02 1,00E+03 1,00E+04

d/λ

le
ft

-e
nd

 v
ol

ta
ge

 (
m

V
)

Re Im



PaperID: NCH-2010-B4, Nausivios Chora 2010, Copyright © 2006-2010: Hellenic Naval Academy 
 

 
 
 
 

10 

6. T. J. Cui, W. C. Chew, “A full-wave model of wire structure with arbitrary cross sections,” IEEE Trans. 

Electromagn. Compat., 45, 626-635 (2003). 

7. C. D. Taylor, R. S. Satterwhite, and C. W. Harrison, “The response of a terminated two-wire 

transmission line excited by a nonuniform electromagnetic field,” IEEE Trans. Antennas Propagat., 

13, 987-989 (1965). 

8. A. A. Smith, “A more convenient form of the equations for the response of a transmission line excited 

by nonuniform fields,” IEEE Trans. Electromagn. Compat., 15, 151-152 (1973). 

9. D. M. Pozar, Microwave Engineering, Wiley, 1998. 

10. A. A. Smith, “The response of a two-wire transmission line excited by the nonuniform electromagnetic 

fields of a nearby loop,” IEEE Trans. Electromagn. Compat., 16, 196-200 (1974). 

11. C. A. Balanis, Antenna Theory, Wiley, 2005. 

12. P. J. Papakanellos and G. V. Veropoulos, “On the load response of terminated transmission lines 

exposed to external electromagnetic fields,” IET Microw. Antennas Propagat., to be published. 

 


